
crypto
Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

crypto 4.2.1
March 13, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 13, 2018

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

2 | Ericsson AB. All Rights Reserved.: crypto

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1 Licenses

Ericsson AB. All Rights Reserved.: crypto | 3

1.1.1 OpenSSL License
/* ==
 * Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

1.2 FIPS mode

4 | Ericsson AB. All Rights Reserved.: crypto

1.1.2 SSLeay License
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

1.2 FIPS mode
This chapter describes FIPS mode support in the crypto application.

1.2 FIPS mode

Ericsson AB. All Rights Reserved.: crypto | 5

1.2.1 Background
OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
is validated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
• Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.

You should read and precisely follow the instructions of the Security Policy and User Guide.

Warning:

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not qualify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

• Configure and build Erlang/OTP with FIPS support:

$ cd $ERL_TOP
$./otp_build configure --enable-fips
...
checking for FIPS_mode_set... yes
...
$ make

If FIPS_mode_set returns no the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

• Set the fips_mode configuration setting of the crypto application to true before loading the crypto module.

The best place is in the sys.config system configuration file of the release.

• Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will all throw exception not_supported.

Entering and leaving FIPS mode on a node already running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in a critical section protected from any concurrently
running crypto operations. Furthermore in case of failure all crypto calls would have to be disabled from the Erlang
or nif code. This would be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds
The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(init|
update|final), hmac_(init|update|final) and stream_(init|encrypt|decrypt)) is different
and incompatible with regular builds when compiling crypto with FIPS support.

href
href

1.2 FIPS mode

6 | Ericsson AB. All Rights Reserved.: crypto

1.2.4 Common caveats
In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problems in application relying
on crypto.

Warning:

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes
Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA
1024 bit

DSS
1024 bit

EC algorithms
160 bit

Restrictions on elliptic curves
The Erlang API allows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing
Md5 is a popular choice as a hash function, but it is not secure enough to be validated. Try to use sha instead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switching to erlang:md5/1 as well.

Certificates and encrypted keys
As md5 is not available in FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain all certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithms which is a viable
alternative.

SNMP v3 limitations
It is only possible to use usmHMACSHAAuthProtocol and usmAesCfb128Protocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required
All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and sha1 hashes in the handshake for various
purposes:

• Authenticating the integrity of the handshake messages.

• In the exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

• In the PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

1.3 Engine Load

Ericsson AB. All Rights Reserved.: crypto | 7

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Note:

Certificates using weak (md5) digests may also cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TLS implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load
This chapter describes the support for loading encryption engines in the crypto application.

1.3.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

1.3.2 Use Cases
Dynamically load an engine from default directory
If the engine is located in the OpenSSL/LibreSSL installation engines directory.

1> {ok, Engine} = crypto:engine_load(<<"otp_test_engine">>, [], []).
 {ok, #Ref}

Note:

The file name requirement on the engine dynamic library can differ between SSL versions.

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

 2> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 []).
 {ok, #Ref}

Note:

The dynamic engine is not supported in LibreSSL from version 2.2.1

1.4 Engine Stored Keys

8 | Ericsson AB. All Rights Reserved.: crypto

Load an engine and replace some methods
Load an engine with the help of the dynamic engine and just replace some engine methods.

 3> Methods = crypto:engine_get_all_methods() -- [engine_method_dh,engine_method_rand,
engine_method_ciphers,engine_method_digests, engine_method_store,
engine_method_pkey_meths, engine_method_pkey_asn1_meths].
[engine_method_rsa,engine_method_dsa,
 engine_method_ecdh,engine_method_ecdsa]
 4> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 [],
 Methods).
 {ok, #Ref}

List all engines currently loaded
 5> crypto:engine_list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys
This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Thoose techniques are not described in this User's Guide. Here we concentrate on how
to use private or public keys stored in such an engine.

The storage engine must call ENGINE_set_load_privkey_function and
ENGINE_set_load_pubkey_function. See the OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for example in SSL. If using the crypto application directly, it is required that:

• an Engine is loaded, see the chapter on Engine Load or the Reference Manual

• a reference to a key in the Engine is available. This should be an Erlang string or binary and depends on the
Engine loaded

• an Erlang map is constructed with the Engine reference, the key reference and possibly a key passphrase if
needed by the Engine. See the Reference Manual for details of the map.

1.4.2 Use Cases
Sign with an engine stored private key
This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

href
href

1.4 Engine Stored Keys

Ericsson AB. All Rights Reserved.: crypto | 9

1> {ok, EngineRef} = crypto:engine_load(....).
...
{ok,#Ref<0.2399045421.3028942852.173962>}
2> PrivKey = #{engine => EngineRef,
 key_id => "id of the private key in Engine"}.
...
3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
 207,177,124,183,156,185,160,243,36,79,125,230,231,...>>

Verify with an engine stored public key
Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
 key_id => "id of the public key in Engine"}.
...
5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key
The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
 key_id => "id of the pwd protected private key in Engine",
 password => "password"}.
...
7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).
<<140,80,168,101,234,211,146,183,231,190,160,82,85,163,
 175,106,77,241,141,120,72,149,181,181,194,154,175,76,
 223,...>>
8>

1.4 Engine Stored Keys

10 | Ericsson AB. All Rights Reserved.: crypto

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

crypto

Ericsson AB. All Rights Reserved.: crypto | 11

crypto
Application

The purpose of the Crypto application is to provide an Erlang API to cryptographic functions, see crypto(3). Note that
the API is on a fairly low level and there are some corresponding API functions available in public_key(3), on a higher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES
The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION
The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fips_mode = boolean()

Specifies whether to run crypto in FIPS mode. This setting will take effect when the nif module is loaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

SEE ALSO
application(3)

href

crypto

12 | Ericsson AB. All Rights Reserved.: crypto

crypto
Erlang module

This module provides a set of cryptographic functions.

• Hash functions - Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4
Message Digest Algorithm (RFC 1320)

• Hmac functions - Keyed-Hashing for Message Authentication (RFC 2104)

• Cmac functions - The AES-CMAC Algorithm (RFC 4493)

• Block ciphers - DES and AES in Block Cipher Modes - ECB, CBC, CFB, OFB, CTR and GCM

• RSA encryption RFC 1321

• Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm
(ECDSA)

• Secure Remote Password Protocol (SRP - RFC 2945)

• gcm: Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC", National Institute of Standards and Technology SP 800- 38D, November 2007.

DATA TYPES
key_value() = integer() | binary()

Always binary() when used as return value

rsa_public() = [key_value()] = [E, N]

Where E is the public exponent and N is public modulus.

rsa_private() = [key_value()] = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C is the CRT coefficient. Terminology is taken from RFC 3447.

dss_public() = [key_value()] = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.

dss_private() = [key_value()] = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

srp_public() = key_value()

Where is A or B from SRP design

srp_private() = key_value()

Where is a or b from SRP design

Where Verifier is v, Generator is g and Prime is N, DerivedKey is X, and Scrambler is u (optional will be generated
if not provided) from SRP design Version = '3' | '6' | '6a'

dh_public() = key_value()

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

Ericsson AB. All Rights Reserved.: crypto | 13

dh_private() = key_value()

dh_params() = [key_value()] = [P, G] | [P, G, PrivateKeyBitLength]

ecdh_public() = key_value()

ecdh_private() = key_value()

ecdh_params() = ec_named_curve() | ec_explicit_curve()

ec_explicit_curve() =
 {ec_field(), Prime :: key_value(), Point :: key_value(), Order :: integer(),
 CoFactor :: none | integer()}

ec_field() = {prime_field, Prime :: integer()} |
 {characteristic_two_field, M :: integer(), Basis :: ec_basis()}

ec_basis() = {tpbasis, K :: non_neg_integer()} |
 {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} |
 onbasis

ec_named_curve() ->
 sect571r1| sect571k1| sect409r1| sect409k1| secp521r1| secp384r1| secp224r1| secp224k1|
 secp192k1| secp160r2| secp128r2| secp128r1| sect233r1| sect233k1| sect193r2| sect193r1|
 sect131r2| sect131r1| sect283r1| sect283k1| sect163r2| secp256k1| secp160k1| secp160r1|
 secp112r2| secp112r1| sect113r2| sect113r1| sect239k1| sect163r1| sect163k1| secp256r1|
 secp192r1|
 brainpoolP160r1| brainpoolP160t1| brainpoolP192r1| brainpoolP192t1| brainpoolP224r1|
 brainpoolP224t1| brainpoolP256r1| brainpoolP256t1| brainpoolP320r1| brainpoolP320t1|
 brainpoolP384r1| brainpoolP384t1| brainpoolP512r1| brainpoolP512t1

Note that the sect curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has
support for them. See also crypto:supports/0

engine_key_ref() = #{engine := engine_ref(),
 key_id := key_id(),
 password => password()}

engine_ref() = term()

The result of a call to engine_load/3.

key_id() = string() | binary()

Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENGINE_load_(private|public)_key functions in libcrypto.

password() = string() | binary()

The key's password

stream_cipher() = rc4 | aes_ctr

block_cipher() = aes_cbc | aes_cfb8 | aes_cfb128 | aes_ige256 | blowfish_cbc |
 blowfish_cfb64 | des_cbc | des_cfb | des3_cbc | des3_cfb | des_ede3 | rc2_cbc

aead_cipher() = aes_gcm | chacha20_poly1305

stream_key() = aes_key() | rc4_key()

crypto

14 | Ericsson AB. All Rights Reserved.: crypto

block_key() = aes_key() | blowfish_key() | des_key()| des3_key()

aes_key() = iodata()

Key length is 128, 192 or 256 bits

rc4_key() = iodata()

Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)

blowfish_key() = iodata()

Variable key length from 32 bits up to 448 bits

des_key() = iodata()

Key length is 64 bits (in CBC mode only 8 bits are used)

des3_key() = [binary(), binary(), binary()]

Each key part is 64 bits (in CBC mode only 8 bits are used)

digest_type() = md5 | sha | sha224 | sha256 | sha384 | sha512

rsa_digest_type() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

dss_digest_type() = sha | sha224 | sha256 | sha384 | sha512

Note that the actual supported dss_digest_type depends on the underlying crypto library. In OpenSSL version >= 1.0.1
the listed digest are supported, while in 1.0.0 only sha, sha224 and sha256 are supported. In version 0.9.8 only sha
is supported.

ecdsa_digest_type() = sha | sha224 | sha256 | sha384 | sha512

sign_options() = [{rsa_pad, rsa_sign_padding()} | {rsa_pss_saltlen, integer()}]

rsa_sign_padding() = rsa_pkcs1_padding | rsa_pkcs1_pss_padding

 hash_algorithms() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

md4 is also supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility
with existing applications.

 cipher_algorithms() = aes_cbc | aes_cfb8 | aes_cfb128 | aes_ctr | aes_gcm |
 aes_ige256 | blowfish_cbc | blowfish_cfb64 | chacha20_poly1305 | des_cbc |
 des_cfb | des3_cbc | des3_cfb | des_ede3 | rc2_cbc | rc4

 mac_algorithms() = hmac | cmac

 public_key_algorithms() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa
and ecdh.

engine_method_type() = engine_method_rsa | engine_method_dsa | engine_method_dh |
 engine_method_rand | engine_method_ecdh | engine_method_ecdsa |
 engine_method_ciphers | engine_method_digests | engine_method_store |
 engine_method_pkey_meths | engine_method_pkey_asn1_meths

crypto

Ericsson AB. All Rights Reserved.: crypto | 15

Exports

block_encrypt(Type, Key, PlainText) -> CipherText
Types:

Type = des_ecb | blowfish_ecb | aes_ecb

Key = block_key()

PlainText = iodata()

Encrypt PlainText according to Type block cipher.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

block_decrypt(Type, Key, CipherText) -> PlainText
Types:

Type = des_ecb | blowfish_ecb | aes_ecb

Key = block_key()

PlainText = iodata()

Decrypt CipherText according to Type block cipher.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

block_encrypt(Type, Key, Ivec, PlainText) -> CipherText
block_encrypt(AeadType, Key, Ivec, {AAD, PlainText}) -> {CipherText,
CipherTag}
block_encrypt(aes_gcm, Key, Ivec, {AAD, PlainText, TagLength}) ->
{CipherText, CipherTag}
Types:

Type = block_cipher()

AeadType = aead_cipher()

Key = block_key()

PlainText = iodata()

AAD = IVec = CipherText = CipherTag = binary()

TagLength = 1..16

Encrypt PlainText according to Type block cipher. IVec is an arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, encrypt PlainTextaccording to Type block
cipher and calculate CipherTag that also authenticates the AAD (Associated Authenticated Data).

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

block_decrypt(Type, Key, Ivec, CipherText) -> PlainText
block_decrypt(AeadType, Key, Ivec, {AAD, CipherText, CipherTag}) -> PlainText
| error
Types:

Type = block_cipher()

AeadType = aead_cipher()

Key = block_key()

PlainText = iodata()

crypto

16 | Ericsson AB. All Rights Reserved.: crypto

AAD = IVec = CipherText = CipherTag = binary()

Decrypt CipherText according to Type block cipher. IVec is an arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, decrypt CipherTextaccording to Type block
cipher and check the authenticity the PlainText and AAD (Associated Authenticated Data) using the CipherTag.
May return error if the decryption or validation fail's

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

bytes_to_integer(Bin) -> Integer
Types:

Bin = binary() - as returned by crypto functions

Integer = integer()

Convert binary representation, of an integer, to an Erlang integer.

compute_key(Type, OthersPublicKey, MyKey, Params) -> SharedSecret
Types:

Type = dh | ecdh | srp

OthersPublicKey = dh_public() | ecdh_public() | srp_public()

MyKey = dh_private() | ecdh_private() | {srp_public(),srp_private()}

Params = dh_params() | ecdh_params() | SrpUserParams | SrpHostParams

SrpUserParams = {user, [DerivedKey::binary(), Prime::binary(),
Generator::binary(), Version::atom() | [Scrambler:binary()]]}

SrpHostParams = {host, [Verifier::binary(), Prime::binary(),
Version::atom() | [Scrambler::binary]]}

SharedSecret = binary()

Computes the shared secret from the private key and the other party's public key. See also public_key:compute_key/2

exor(Data1, Data2) -> Result
Types:

Data1, Data2 = iodata()

Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:

Type = dh | ecdh | rsa | srp

Params = dh_params() | ecdh_params() | RsaParams | SrpUserParams |
SrpHostParams

RsaParams = {ModulusSizeInBits::integer(), PublicExponent::key_value()}

SrpUserParams = {user, [Generator::binary(), Prime::binary(),
Version::atom()]}

SrpHostParams = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::atom()]}

PublicKey = dh_public() | ecdh_public() | rsa_public() | srp_public()

crypto

Ericsson AB. All Rights Reserved.: crypto | 17

PrivKeyIn = undefined | dh_private() | ecdh_private() | srp_private()

PrivKeyOut = dh_private() | ecdh_private() | rsa_private() | srp_private()

Generates a public key of type Type. See also public_key:generate_key/1. May throw exception an exception of class
error:

• badarg: an argument is of wrong type or has an illegal value,

• low_entropy: the random generator failed due to lack of secure "randomness",

• computation_failed: the computation fails of another reason than low_entropy.

Note:

RSA key generation is only available if the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will throw exception error:notsup.

hash(Type, Data) -> Digest
Types:

Type = md4 | hash_algorithms()

Data = iodata()

Digest = binary()

Computes a message digest of type Type from Data.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_init(Type) -> Context
Types:

Type = md4 | hash_algorithms()

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should
be used as argument to hash_update.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_update(Context, Data) -> NewContext
Types:

Data = iodata()

Updates the digest represented by Context using the given Data. Context must have been generated using
hash_init or a previous call to this function. Data can be any length. NewContext must be passed into the next
call to hash_update or hash_final.

hash_final(Context) -> Digest
Types:

Digest = binary()

Finalizes the hash operation referenced by Context returned from a previous call to hash_update. The size of
Digest is determined by the type of hash function used to generate it.

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:

crypto

18 | Ericsson AB. All Rights Reserved.: crypto

Type = hash_algorithms() - except ripemd160

Key = iodata()

Data = iodata()

MacLength = integer()

Mac = binary()

Computes a HMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

hmac_init(Type, Key) -> Context
Types:

Type = hash_algorithms() - except ripemd160

Key = iodata()

Context = binary()

Initializes the context for streaming HMAC operations. Type determines which hash function to use in the HMAC
operation. Key is the authentication key. The key can be any length.

hmac_update(Context, Data) -> NewContext
Types:

Context = NewContext = binary()

Data = iodata()

Updates the HMAC represented by Context using the given Data. Context must have been generated using an
HMAC init function (such as hmac_init). Data can be any length. NewContext must be passed into the next call
to hmac_update or to one of the functions hmac_final and hmac_final_n

Warning:

Do not use a Context as argument in more than one call to hmac_update or hmac_final. The semantics of reusing
old contexts in any way is undefined and could even crash the VM in earlier releases. The reason for this limitation
is a lack of support in the underlying OpenSSL API.

hmac_final(Context) -> Mac
Types:

Context = Mac = binary()

Finalizes the HMAC operation referenced by Context. The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_final_n(Context, HashLen) -> Mac
Types:

Context = Mac = binary()

HashLen = non_neg_integer()

Finalizes the HMAC operation referenced by Context. HashLen must be greater than zero. Mac will be a binary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

crypto

Ericsson AB. All Rights Reserved.: crypto | 19

cmac(Type, Key, Data) -> Mac
cmac(Type, Key, Data, MacLength) -> Mac
Types:

Type = block_cipher()

Key = iodata()

Data = iodata()

MacLength = integer()

Mac = binary()

Computes a CMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

info_fips() -> Status
Types:

Status = enabled | not_enabled | not_supported

Provides information about the FIPS operating status of crypto and the underlying OpenSSL library. If crypto was built
with FIPS support this can be either enabled (when running in FIPS mode) or not_enabled. For other builds
this value is always not_supported.

Warning:

In FIPS mode all non-FIPS compliant algorithms are disabled and throw exception not_supported. Check
supports that in FIPS mode returns the restricted list of available algorithms.

info_lib() -> [{Name,VerNum,VerStr}]
Types:

Name = binary()

VerNum = integer()

VerStr = binary()

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,269484095,<<"OpenSSL 1.1.0c 10 Nov 2016"">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
opensslv.h) used when crypto was compiled. The text variant represents the OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod_pow(N, P, M) -> Result
Types:

crypto

20 | Ericsson AB. All Rights Reserved.: crypto

N, P, M = binary() | integer()

Result = binary() | error

Computes the function N^P mod M.

next_iv(Type, Data) -> NextIVec
next_iv(Type, Data, IVec) -> NextIVec
Types:

Type = des_cbc | des3_cbc | aes_cbc | des_cfb

Data = iodata()

IVec = NextIVec = binary()

Returns the initialization vector to be used in the next iteration of encrypt/decrypt of type Type. Data is the encrypted
data from the previous iteration step. The IVec argument is only needed for des_cfb as the vector used in the
previous iteration step.

private_decrypt(Type, CipherText, PrivateKey, Padding) -> PlainText
Types:

Type = rsa

CipherText = binary()

PrivateKey = rsa_private() | engine_key_ref()

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

PlainText = binary()

Decrypts the CipherText, encrypted with public_encrypt/4 (or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

privkey_to_pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types:

Type = rsa | dss

EnginePrivateKeyRef = engine_key_ref()

PublicKey = rsa_public() | dss_public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

private_encrypt(Type, PlainText, PrivateKey, Padding) -> CipherText
Types:

Type = rsa

PlainText = binary()

The size of the PlainText must be less than byte_size(N)-11 if rsa_pkcs1_padding is used, and
byte_size(N) if rsa_no_padding is used, where N is public modulus of the RSA key.

PrivateKey = rsa_private() | engine_key_ref()

Padding = rsa_pkcs1_padding | rsa_no_padding

CipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the ciphertext. This is a low level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

crypto

Ericsson AB. All Rights Reserved.: crypto | 21

public_decrypt(Type, CipherText, PublicKey, Padding) -> PlainText
Types:

Type = rsa

CipherText = binary()

PublicKey = rsa_public() | engine_key_ref()

Padding = rsa_pkcs1_padding | rsa_no_padding

PlainText = binary()

Decrypts the CipherText, encrypted with private_encrypt/4(or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt(Type, PlainText, PublicKey, Padding) -> CipherText
Types:

Type = rsa

PlainText = binary()

The size of the PlainText must be less than byte_size(N)-11 if rsa_pkcs1_padding is used, and
byte_size(N) if rsa_no_padding is used, where N is public modulus of the RSA key.

PublicKey = rsa_public() | engine_key_ref()

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

CipherText = binary()

Encrypts the PlainText (message digest) using the PublicKey and returns the CipherText. This is a low level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand_seed(Seed) -> ok
Types:

Seed = binary()

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness" built in. Normally this is when strong_rand_bytes/1
throws low_entropy

rand_uniform(Lo, Hi) -> N
Types:

Lo, Hi, N = integer()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator.
Hi must be larger than Lo.

sign(Algorithm, DigestType, Msg, Key) -> binary()
sign(Algorithm, DigestType, Msg, Key, Options) -> binary()
Types:

Algorithm = rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest
(plaintext).

DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()

crypto

22 | Ericsson AB. All Rights Reserved.: crypto

Key = rsa_private() | dss_private() | [ecdh_private(),ecdh_params()] |
engine_key_ref()

Options = sign_options()

Creates a digital signature.

Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3.

start() -> ok
Equivalent to application:start(crypto).

stop() -> ok
Equivalent to application:stop(crypto).

strong_rand_bytes(N) -> binary()
Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.

May throw exception low_entropy in case the random generator failed due to lack of secure "randomness".

rand_seed() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN_rand_range), and saves it on process dictionary before returning it as well. See also
rand:seed/1.

Example

_ = crypto:rand_seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand_seed_s() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL's BN_rand_range). See also rand:seed_s/1.

stream_init(Type, Key) -> State
Types:

Type = rc4

State = opaque()

Key = iodata()

Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

stream_init(Type, Key, IVec) -> State
Types:

crypto

Ericsson AB. All Rights Reserved.: crypto | 23

Type = aes_ctr

State = opaque()

Key = iodata()

IVec = binary()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 bits long. IVec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for
use with stream_encrypt and stream_decrypt.

stream_encrypt(State, PlainText) -> { NewState, CipherText}
Types:

Text = iodata()

CipherText = binary()

Encrypts PlainText according to the stream cipher Type specified in stream_init/3. Text can be any number
of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_encrypt.

stream_decrypt(State, CipherText) -> { NewState, PlainText }
Types:

CipherText = iodata()

PlainText = binary()

Decrypts CipherText according to the stream cipher Type specified in stream_init/3. PlainText can be any
number of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_decrypt.

supports() -> AlgorithmList
Types:

AlgorithmList = [{hashs, [hash_algorithms()]}, {ciphers,
[cipher_algorithms()]}, {public_keys, [public_key_algorithms()]}, {macs,
[mac_algorithms()]}]

Can be used to determine which crypto algorithms that are supported by the underlying OpenSSL library

ec_curves() -> EllipticCurveList
Types:

EllipticCurveList = [ec_named_curve()]

Can be used to determine which named elliptic curves are supported.

ec_curve(NamedCurve) -> EllipticCurve
Types:

NamedCurve = ec_named_curve()

EllipticCurve = ec_explicit_curve()

Return the defining parameters of a elliptic curve.

crypto

24 | Ericsson AB. All Rights Reserved.: crypto

verify(Algorithm, DigestType, Msg, Signature, Key) -> boolean()
verify(Algorithm, DigestType, Msg, Signature, Key, Options) -> boolean()
Types:

Algorithm = rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" data or it is the hashed value of "cleartext" i.e. the digest (plaintext).

DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()

Signature = binary()

Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_params()] |
engine_key_ref()

Options = sign_options()

Verifies a digital signature

Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4.

engine_get_all_methods() -> Result
Types:

Result = [EngineMethod::atom()]

Returns a list of all possible engine methods.

May throw exception notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_load(EngineId, PreCmds, PostCmds) -> Result
Types:

EngineId = unicode:chardata()

PreCmds, PostCmds = [{unicode:chardata(), unicode:chardata()}]

Result = {ok, Engine::term()} | {error, Reason::term()}

Loads the OpenSSL engine given by EngineId if it is available and then returns ok and an engine handle. This
function is the same as calling engine_load/4 with EngineMethods set to a list of all the possible methods.
An error tuple is returned if the engine can't be loaded.

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_load(EngineId, PreCmds, PostCmds, EngineMethods) -> Result
Types:

EngineId = unicode:chardata()

PreCmds, PostCmds = [{unicode:chardata(), unicode:chardata()}]

EngineMethods = [engine_method_type()]

Result = {ok, Engine::term()} | {error, Reason::term()}

Loads the OpenSSL engine given by EngineId if it is available and then returns ok and an engine handle. An error
tuple is returned if the engine can't be loaded.

crypto

Ericsson AB. All Rights Reserved.: crypto | 25

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_unload(Engine) -> Result
Types:

Engine = term()

Result = ok | {error, Reason::term()}

Unloads the OpenSSL engine given by EngineId. An error tuple is returned if the engine can't be unloaded.

The function throws a badarg if the parameter is in wrong format. It may also throw the exception notsup in case there
is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_list() -> Result
Types:

Result = [EngineId::unicode:chardata()]

List the id's of all engines in OpenSSL's internal list.

It may also throw the exception notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()

CmdName = unicode:chardata()

CmdArg = unicode:chardata()

Result = ok | {error, Reason::term()}

Sends ctrl commands to the OpenSSL engine given by Engine. This function is the same as calling
engine_ctrl_cmd_string/4 with Optional set to false.

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional) -> Result
Types:

Engine = term()

CmdName = unicode:chardata()

CmdArg = unicode:chardata()

Optional = boolean()

Result = ok | {error, Reason::term()}

Sends ctrl commands to the OpenSSL engine given by Engine. Optional is a boolean argument that can relax
the semantics of the function. If set to true it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success
without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
so we set this to false.

crypto

26 | Ericsson AB. All Rights Reserved.: crypto

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Reference Manual
	crypto
	crypto
	block_encrypt/3
	block_decrypt/3
	block_encrypt/4
	block_encrypt/4
	block_encrypt/4
	block_decrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	cmac/3
	cmac/4
	info_fips/0
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	private_decrypt/4
	privkey_to_pubkey/2
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	sign/4
	sign/5
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	verify/5
	verify/6
	engine_get_all_methods/0
	engine_load/3
	engine_load/4
	engine_unload/1
	engine_list/0
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4

