| v

ERLANG

Secure Socket Layer

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.
Secure Socket Layer 8.1.1
March 14, 2017

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2017

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.1 Introduction

1 SSL User's Guide

The Secure Socket Layer (SSL) application provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of SSL/TLS.

1.2 TLS and its Predecessor, SSL

The Erlang SSL application implements the SSL/TLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default SSL/TLSisrun over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to an SSL connection, thisis supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TL S handshake procedure before transmitting
or receiving any data. During the handshake, they agree on a protocol version and cryptographic algorithms, generate
shared secrets using public key cryptographies, and optionally authenticate each other with digital certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typically
used for encrypting bulk data.

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS handshake.

The TLS handshake protocol and data transfer is run on top of the TLS Record Protocol, which uses a keyed-hash
Message Authenticity Code (MAC), or a Hash-based MAC (HMAC), to protect the message data integrity. From the
TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret data. It is
difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL API

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.

* Thecaertificates attributes are valid.

e Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurableif the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."”

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session data is to be saved can be configured.

By default the SSL clients try to reuse an available session and by default the SSL servers agree to reuse sessions
when clients ask for it.

1.3 Using SSL API

To see relevant version information for sd, call ssl : ver si ons/ 0.

To see all supported cipher suites, call ssl : ci pher _sui tes(al |) . Theavailable cipher suitesfor aconnection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
isto use the strongest available.

1.3.1 Setting up Connections

This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of thessl socket isabbreviated with[. . .] asit can befairly large and is opaque.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL API

Minimal Example

Note:
The minimal setup is not the most secure setup of SSL.

To set up client/server connections:

Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create an SSL listen socket:

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}l).
{ok, {sslsocket, [...]1}}

Step 3. Do atransport accept on the SSL listen socket:

3 server> {ok, Socket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...1}}

Step 4: Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the SSL handshake:

4 server> ok = ssl:ssl accept(Socket).
ok

Step 6: Send a message over SSL:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]1},"foo"}
ok

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL API

Upgrade Example

Note:

To upgrade a TCP/IP connection to an SSL connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgradeto an SSL connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create anormal TCP listen socket:

2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true}l).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4: Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensureact i ve issettof al se before trying to upgrade a connection to an SSL connection, otherwise SSL
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}l).
ok

Step 6: Do the SSL handshake:

5 server> {ok, SSLSocket} = ssl:ssl accept(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok,{sslsocket,[...]1}}

Step 7: Upgrade to an SSL connection. The client and server must agree upon the upgrade. The server must call
ssl : accept/ 2 beforetheclient callsssl : connect/ 3.

3 client>{ok, SSLSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}], infinity).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.4 Using SSL for Erlang Distribution

{ok,{sslsocket,[...]1}}
Step 8: Send a message over SSL:

4 client> ssl:send(SSLSocket, "foo").
ok

Step 9: Setacti ve true onthe SSL socket:

4 server> ssl:setopts(SSLSocket, [{active, true}l).
ok

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.4 Using SSL for Erlang Distribution

This section describes how the Erlang distribution can use SSL to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st, canbeused asan aternative. All distribution
connectionswill use SSL and all participating Erlang nodesin a distributed system must use this distribution module.

The security level depends on the parameters provided to the SSL connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over SSL:

e Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use SSL.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the ssl Application

Boot scriptsare built using the sy st ool s utility inthe SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start_clean.rel.

Do the following:
e Copy that script to another location (and preferably another name).

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using SSL for Erlang Distribution

« Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith SSL added:

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel, "2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

1}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:
e Build the boot script.

Assumingthe.rel fileisstoredinafilestart_ssl.rel inthecurrent directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot filein the current directory.
Do the following:

* Test the boot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan dternative to building a bootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, aslong as the SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

Note:

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as heeded to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.4 Using SSL for Erlang Distribution

1.4.2 Specifying Distribution Module for net_kernel

The distribution module for SSL isnamed i net _t| s_di st and is specified on the command line with option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with- prot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls

For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no SSL parameters are supplied (see the next
section).

1.4.3 Specifying SSL Options

For SSL to work, at least a public key and a certificate must be specified for the server side. In the following example,
the PEM-files consist of two entries, the server certificate and its private key.

Ontheer| command line you can specify options that the SSL distribution adds when creating a socket.

The simplest SSL options in the following list can be specified by adding the prefix server _or cl i ent _ to the
option name;

« certfile

« keyfile

e« password

 cacertfile

e verify

e verify fun (writeas{Mddul e, Function, Initial UserState})
e crl_check

* crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

 depth

e hibernate_after

* ci phers (useold string format)

Note that veri fy_f un needs to be written in a different form than the corresponding SSL option, since funs are
not accepted on the command line.

The server can also takethe optionsdhfil eandfail _i f_no_peer_cert (also prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using SSL for Erlang Distribution

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the SSL options is named - ssl _di st _opt and is to be followed by
pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line can now look as follows (line breaks in the command are for readability, and are not be
there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl test@myhost)1>

A node started in thisway is fully functional, using SSL as the distribution protocol.

1.4.4 Setting up Environment to Always Use SSL

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the SSL distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

InaUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)

(ssl test@myhost)1l> init:get arguments().

[{root,["/usr/local/erlang"]1},

{progname, ["erl "]},

{sname, ["ssl test"l},

{boot, ["/home/me/ssl/start ssl"]},

{proto dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},

{ssl dist opt,["server secure renegotiate","true",
“client secure renegotiate","true"]

{home, ["/home/me"]}]

Thei ni t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.5 Using SSL distribution over IPv6

It is possible to use SSL distribution over IPv6 instead of IPv4. To do this, pass the option - prot o_di st
inet6 tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.4 Using SSL for Erlang Distribution

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl _dist opt server_certfile “/home/me/ssl/erlserver.pem"

-ssl _dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl test@myhost)1>

A node started in thisway will only be able to communicate with other nodes using SSL distribution over 1Pv6.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using SSL for Erlang Distribution

2 Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

ssl

ssl
Application

The sd application is an implementation of the SSL/TLS protocol in Erlang.

e Supported SSL/TLS-versionsare SSL-3.0, TLS-1.0, TLS-1.1, and TLS-1.2.

e For security reasons SSL-2.0 is not supported.

» For security reasons SSL-3.0 is no longer supported by default, but can be configured.

» For security reasons DES cipher suites are no longer supported by default, but can be configured.

e Renegotiation Indication Extension RFC 5746 is supported

» Ephemera Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

e Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.
» Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

» |DEA cipher suites are not supported as they have become deprecated by the latest TL S specification so it is not
motivated to implement them.

e Compression is not supported.

e CRL validation is supported.

« Palicy certificate extensions are not supported.

* 'Server Name Indication' extension (RFC 6066) is supported.

« Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

* Itispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

DEPENDENCIES

The SSL application usesthepubl i ¢_key and Crypto application to handle public keys and encryption, hence these
applications must be loaded for the SSL application to work. In an embedded environment this means they must be
started withappl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl. 2", "tlsvl.1']"
prot ocol _versi on = sd:protocol()<opt i onal >

Protocol supported by started clients and servers. If this option is not set, it defaults to all protocols currently
supported by the SSL application. This option can be overridden by the version option to ssl : connect/
[2,3] andssl : listen/2.

session_lifetine = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

ssl

session_cb = atom() <optional >

Name of the session cache callback module that implements the ssl _sessi on_cache_api behavior.
Defaultstossl _sessi on_cache.

session_cb_init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client _max = integer() <optional >

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessionsis reached, the current cache entries will be
invalidated regardless of their remaining lifetime. Defaults to 1000.

sessi on_cache_server_max = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If
the maximum number of sessions is reached, the current cache entries will be invalidated regardless of their
remaining lifetime. Defaults to 1000.

ssl _pem cache_clean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

sd:clear_pem cache/O
bypass_pem cache = bool ean() <optional >

Introduced in sd-8.0.2. Disables the PEM-cache. The PEM cache has proven to be a bottleneck, until the
implementation has been improved this can be used as a workaround. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses the default OTP error logger to log unexpected errors and TLS alerts. The logging of TLS
alerts may be turned off with thel og_al ert option.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

ssl

ssli

Erlang module

This module contains interface functions for the SSL/TLS protocol. For detailed information about the supported
standards see sdl(6).

DATA TYPES

The following data types are used in the functions for SSL:
bool ean() =
true | false
option() =
socketoption() | ssl_option() | transport_option()
socket option() =
proplists: property()
The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].
For valid options, see the inet(3) and gen_tcp(3) manual pagesin Kernel.
ssl _option() =
{verify, verify type()}
| {verify_fun, {fun(), term()}}
| {fail _if_no_peer_cert, bool ean()}
| {depth, integer()}
| {cert, public_key:der_encoded()}
| {certfile, path()}
I

{key, {' RSAPri vat eKey' | ' DSAPr i vat eKey' ' ECPri vat eKey'
"PrivateKeylnfo', public_key:der_encoded()}}

{keyfile, path()}

{password, string()}

{cacerts, [public_key:der encoded()]}
{cacertfile, path()}

{dh, public_key: der_encoded()}
{dhfile, path()}

{ci phers, ciphers()}

srp_identity, {string(), string()}}
{reuse_sessions, boolean()}
{reuse_session, fun()} {next _protocols advertised, [binary()]}

{client preferred _next protocols, {client | server, [binary()]} | {client

I
I
I
I
I
I
I
| {user _I ookup_fun, {fun(), term()}}, {psk_identity, string()},
{
I
I
I
| server, [binary()], binary()}}

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

| {log_ alert, boolean()}
| {server_name_indication, hostname() | disabl e}
| {sni_hosts, [{hostname(), [ssl| _option()]}]}
| {sni_fun, SNIfun::fun()}
transport _option() =

{cb_info, {CallbackMdule::aton(), DataTag::aton(), C osedTag::aton(),
ErrTag: atom()}}

Defaultsto{gen_tcp, tcp, tcp_closed, tcp_error}.Canbeusedtocustomizethetransport layer.
The callback module must implement a reliable transport protocol, behave as gen_t cp, and have functions
correspondingtoi net : set opt s/ 2,i net: get opt s/ 2,i net: peer nanme/ 1,i net : socknane/ 1, and
i net:port/ 1. Thecalback gen_t cp istreated specially and callsi net directly.

Cal | backModul e =
atom()
Dat aTag =
atom()
Used in socket data message.
Cl osedTag =
atom()
Used in socket close message.
verify type() =
verify none | verify_ peer
path() =
string()
Represents afile path.
publ i c_key: der _encoded() =

bi nary()

ASN.1 DER-encoded entity as an Erlang binary.
host () =

host nanme() | i paddress()

host nane() =
string()
i p_address() =
{N1, N2, N3, Md} %I Pv4 | {K1, K2, K3, K4, K5, K6, K7, K8} % | Pv6
ssl socket () =
opague()
protocol () =
sslv3 | tlsvl | "tlsvl. 1" | "tlsvl. 2

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

ssl

ci phers() =
= [ciphersuite()] | string()
According to old API.

ci phersuite() =

{key_exchange(), cipher(), MAC:hash()} | {key_exchange(), cipher(),
MAC: : hash(), PRF::hash()}

key_exchange() =

rsa | dhe_dss | dhe_rsa | dh_anon | psk | dhe_psk | rsa_psk | srp_anon
| srp_dss | srp_rsa | ecdh_anon | ecdh_ecdsa | ecdhe_ecdsa | ecdh_rsa |
ecdhe _rsa

ci pher() =

rc4_128 | des_cbc | '3des_ede_chc' | aes_128 chc | aes_256_cbc | aes_128 gcm
| aes_256_gcm | chacha20_pol y1305

hash() =
md5 | sha | sha224 | sha256 | sha348 | sha512
prf_random() =
client_random | server_random
srp_paramtype() =
srp_1024 | srp_1536 | srp_2048 | srp_3072 | srp_4096 | srp_6144 | srp_8192
SNI fun:: fun()
= fun(ServerNanme :: string()) -> [ssl _option()]
naned_curve() =

sect571r1 | sect571kl | secp521rl | brainpool P512r1 | sect409k1l | sect409r1
| brainpool P384r1 | secp384rl | sect283kl | sect283rl1 | brainpool P256r1
secp256kl | secp256r1 | sect239kl | sect233kl | sect233rl | secp224kl |
secp224r1 | sect193r1 | sect193r2 | secpl92kl | secpl92rl | sect163kl |
sect 163r1 | sect163r2 | secpl6Okl | secpl60rl | secpl60r?2

SSL OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

The following options have the same meaning in the client and the server:
{cert, public_key:der_encoded()}

The DER-encoded users certificate. If thisoption is supplied, it overridesoptioncertfil e.
{certfile, path()}

Path to afile containing the user certificate.

{key, {' RSAPrivateKey'| 'DSAPrivateKey' | 'ECPrivateKey' |'PrivateKeylnfo',
public_key: der_encoded()}}

The DER-encoded user's private key. If thisoption is supplied, it overrides option keyf i | e.
{keyfile, path()}

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain severa entries, this
option defaultsto the samefile as given by optioncertfi | e.

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{password, string()}
String containing the user's password. Only used if the private keyfile is password-protected.
{ci phers, ciphers()}

Supported cipher suites. Thefunction ci pher _sui t es/ 0 can be used to find all ciphersthat are supported by
default. ci pher _suites(all) canbecalledto find al available cipher suites. Pre-Shared Key (RFC 4279
and RFC 5487), Secure Remote Password (RFC 5054), RC4 cipher suites, and anonymous cipher suites only
work if explicitly enabled by this option; they are supported/enabled by the peer also. Anonymous cipher suites
are supported for testing purposes only and are not be used when security matters.

{eccs, [nanmed_curve()]}

Allows to specify the order of preference for named curves and to restrict their usage when using a cipher suite
supporting them.

{secure_renegotiate, bool ean()}

Specifies if to reect renegotiation attempt that does not live up to RFC 5746. By default
secure_renegoti ate issettof al se, that is, secure renegotiation is used if possible, but it falls back to
insecure renegotiation if the peer does not support RFC 5746.

{depth, integer()}

Maximum number of non-self-issued intermediate certificates that can follow the peer certificate in a valid
certification path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can
be PEER, CA, ROOT-CA; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default value is 1.

{verify_fun, {Verifyfun :: fun(), InitialUserState :: tern()}}
The verification fun isto be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad cert, Reason :: atom() | {revoked,
atom()}} |
{extension, #'Extension'{}}, InitialUserState :: term()) ->
{valid, UserState :: term()} | {valid peer, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It is also called when a certificate is considered valid by the path validation to allow
access to each certificate in the path to the user application. It differentiates between the peer certificate and the
CA certificatesby usingval i d_peer orval i d assecond argument to the verification fun. Seethe public_key
User's Guide for definition of #' OTPCertificate' {} and#' Extension'{}.

e If the verify callback funreturns{f ai | , Reason}, the verification process isimmediately stopped, an
aert is sent to the peer, and the TLS/SSL handshake terminates.
e If theverify callback funreturns{ val i d, User St at e}, the verification process continues.

o If the verify calback fun aways returns { val i d, User St at e}, the TLS/SSL handshake does not
terminate regarding verification failures and the connection is established.

e |f caled with an extension unknown to the user application, return value { unknown, User St at e} is
to be used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.
Default optionveri fy_funinverify_peer node:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

href
href
href
href
href

ssl

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

Default optionveri fy_funinmodeverify_none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are given on form{ bad_cert, Reason} whereReason is
unknown_ca

No trusted CA was found in the trusted store. The trusted CA is normally a so called ROOT CA, which is
a self-signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be
self-signed according to X-509) by using option parti al _chai n.

sel fsi gned_peer
The chain consisted only of one self-signed certificate.
PKI X X-509-path validation error
For possible reasons, see public_key:pkix_path_validation/3
{crl _check, boolean() | peer | best_effort }

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on al the certificates
during the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.
best _effort
if certificate revocation status can not be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.
The CRLs will be fetched from alocal or external cache. See ss_crl_cache_api(3).

{crl _cache, {Moddule :: atom(), {DbHandle :: internal | tern(), Args ::
list()}}}

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaultstoss_crl_cachewith
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl _crl _cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function
sd_crl_cacheiinsert/1, and optionally automatically fetched through HTTP if the following argument is
specified:

{http, timeout()}

Enables fetching of CRL s specified as http URIsinX509 certificate extensions. Requiresthe OTP inets
application.

ssl _crl _hash dir
This module makes use of a directory where CRLs are stored in files named by the hash of the issuer name.

The file names consist of eight hexadecimal digits followed by . r N, where N is an integer, e.qg.
1la2b3c4d. r 0. For thefirst version of the CRL, Nstarts at zero, and for each new version, Nisincremented
by one. The OpenSSL utility ¢c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds al consecutive. r * files starting from zero, and those files taken
together make up therevocation list. CRL fileswhosenext Updat e fieldsarein the past, or that areissued
by a different CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
max_handshake_si ze

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks.
Defaults to 256* 1024.

{partial _chain, fun(Chain::[DerCert]) -> {trusted_ca, DerCert} | unknown_ca }

Claim anintermediate CA in the chain astrusted. TLSthen performs public_key:pkix_path_validation/3 with the
selected CA astrusted anchor and the rest of the chain.

{versions, [protocol ()]}

TL Sprotocol versions supported by started clientsand servers. This option overrides the application environment
option pr ot ocol _ver si on. If the environment option is not set, it defaults to all versions, except SSL-3.0,
supported by the SSL application. See also ssl(6).

{hi bernate_after, integer()|undefined}

When an integer-value is specified, ssl _connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thusreducing itsmemory footprint. Whenundef i ned isspecified (thisisthe default),
the process never goes into hibernation.

{user _| ookup_fun, {Lookupfun :: fun(), UserState :: term()}}
Thelookup funisto defined as follows:

fun(psk, PSKIdentity ::string(), UserState :: term()) ->
{ok, SharedSecret :: binary()} | error;
fun(srp, Username :: string(), UserState :: term()) ->
{ok, {SRPParams :: srp param type(), Salt :: binary(), DerivedKey :: binary()}} | error.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

ssl

For Pre-Shared Key (PSK) cipher suites, the lookup fun is called by the client and server to determine the shared
secret. When called by the client, PSKI dent i t y isset to the hint presented by the server or to undefined. When
called by the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses
to generate its session keys. Deri vedKey is to be derived according to RFC 2945 and RFC 5054:
crypto:sha([Salt, crypto:sha([Usernane, <<$:>> Password])])

{ paddi ng_check, bool ean()}

Affects TLS-1.0 connections only. If set to f al se, it disables the block cipher padding check to be able to
interoperate with legacy software.

Warning:
Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack.

{beast _mitigation, one_n_m nus_one | zero_n | disabl ed}

Affects SSL-3.0 and TLS-1.0 connections only. Used to change the BEAST mitigation strategy to interoperate
with legacy software. Defaultsto one_n_im nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Warning:
Using{ beast _m tigation, disabl ed} makesSSL or TLS vulnerableto the BEAST attack.

SSL OPTION DESCRIPTIONS - CLIENT SIDE

The following options are client-specific or have adlightly different meaning in the client than in the server:

{verify, verify type()}

In mode veri fy_none the default behavior is to alow al x509-path validation errors. See also option
verify_fun.

{reuse_sessi ons, bool ean()}

Specifiesif the client isto try to reuse sessions when possible.
{cacerts, [public_key:der_encoded()]}

The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi |l e.
{cacertfile, path()}

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication
and when building the client certificate chain.

{al pn_advertised_protocols, [binary()]}

Thelist of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will chooseaprotocol from thislist; otherwiseit will fail
the connection witha"no_application_protocol" aert. A server that does not support ALPN will ignorethisvalue.

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

Thelist of protocols must not contain an empty binary.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.

{client_preferred_next_protocols, {Precedence :: server | client,
CientPrefs :: [binary()]}}
{client_preferred_next_protocols, {Precedence :: server | client,

CientPrefs :: [binary()], Default :: binary()}}
Indicates that the client isto try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list,
which isalso on the client preferencelist.

If precedenceis client, the negotiated protocol isthefirst protocol to be shown on the client preferencelist, which
isalso on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols,
the client falls back to the first protocol initslist or to the default protocol (if a default is supplied). If the server
does not support Next Protocol Negotiation, the connection terminatesif no default protocol is supplied.

{psk_identity, string()}

Specifies the identity the client presents to the server. The matching secret is found by calling
user _| ookup_fun.

{srp_identity, {Username :: string(), Password :: string()}

Specifies the username and password to use to authenticate to the server.
{server _nane_indication, hostnane()}

Can be specified when upgrading a TCP socket to a TL S socket to usethe TL S Server Name Indication extension.
{server _nane_i ndi cati on, disabl e}

When starting a TL S connection without upgrade, the Server Name Indication extension is sent if possible. This
option can be used to disable that behavior.

{fall back, bool ean()}
Send specia cipher suite TLS FALLBACK_SCSV to avoid undesired TL S version downgrade. Defaultsto false

Warning:

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But
legacy clients that retries connections in the following manner

ssl:connect (Host, Port, [...{versions, ['tlsv2', ‘'tlsvl.1', 'tlsvl',
"sslv3']1}])

ssl: connect (Host, Port, [...{versions, [tlsvl.1', 'tlsvl', 'sslv3]},
{fall back, true}])

ssl: connect (Host, Port, [...{versions, ['tlsvl', 'sslv3']}, {fallback,
true}])

ssl :connect (Host, Port, [...{versions, ['sslv3]}, {fallback, true}])

may use it to avoid undesired TLS version downgrade. Note that TLS FALLBACK_SCSV must also be
supported by the server for the prevention to work.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

ssl

{signature_algs, [{hash(), ecdsa | rsa | dsa}]}

In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random calculation, the TL S signature algorithm extension Section 7.4.1.4.1in RFC
5246 may be used, from TLS 1.2, to negotiate which signature algorithm to use during the TL S handshake. If
no lower TLS versions than 1.2 are supported, the client will send a TLS signature algorithm extension with the
algorithms specified by this option. Defaults to

[

%% SHA2

{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA

{sha, ecdsa},
{sha, rsa},
{sha, dsa},

|

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions
that may be selected. Default support for {md5, rsa} removed in ssl-8.0

SSL OPTION DESCRIPTIONS - SERVER SIDE

The following options are server-specific or have adlightly different meaning in the server than in the client:
{cacerts, [public_key:der_encoded()]}

The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi |l e.
{cacertfile, path()}

Path to afile containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAs are also used in the list of acceptable client CAs passed to the
client when a certificate is requested. Can be omitted if there is no need to verify the client and if there are no
intermediate CAsfor the server certificate.

{dh, public_key: der_encoded()}
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhf i | e.
{dhfile, path()}

Path to afile containing PEM-encoded Diffie Hellman parameters to be used by the server if a cipher suite using
Diffie Hellman key exchange is negotiated. If not specified, default parameters are used.

{verify, verify type()}

A server only does x509-path validation in mode veri fy_peer, asit then sends a certificate request to the
client (this messageis not sent if the verify optionisveri f y_none). You can then aso want to specify option
fail _if_no_peer_cert.

{fail _if_no_peer_cert, bool ean()}

Used together with{ veri fy, verify_peer} by anSSL server. If settot r ue, the server failsif the client
does not have a certificate to send, that is, sends an empty certificate. If set to f al se, it fails only if the client
sends an invalid certificate (an empty certificate is considered valid). Defaultsto false.

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

{reuse_sessi ons, bool ean()}

Specifies if the server is to agree to reuse sessions when requested by the clients. See also option
reuse_session.

{reuse_session, fun(SuggestedSessionld, PeerCert, Conpression, G pherSuite) -
> bool ean()}

Enables the SSL server to have alocal policy for deciding if asession isto be reused or not. Meaningful only if
reuse_sessionsissettot rue. Suggest edSessi onl disabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

{al pn_preferred _protocols, [binary()]}
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocolsisin order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" aert.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
{next _protocol s_advertised, Protocols :: [binary()]}

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client
can select a protocol that is not on thislist. The list of protocols must not contain an empty binary. If the server
negotiates a Next Protocol, it can be accessed using the negot i at ed_next _pr ot ocol / 1 method.

{psk_identity, string()}

Specifies the server identity hint, which the server presents to the client.
{log_al ert, boolean()}

If settof al se, error reports are not displayed.
{honor _ci pher_order, bool ean()}

If set to t rue, use the server preference for cipher selection. If set to f al se (the default), use the client
preference.

{sni _hosts, [{hostnane(), [ssl| _option()]}]}

If the server receives a SNI (Server Name Indication) from the client matching ahost listed inthesni _host s
option, the specific options for that host will override previously specified options. The option sni _f un, and
sni _host s aremutualy exclusive.

{sni_fun, SN fun::fun()}

If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[ssl _option()] fortheindicated server. These optionswill be merged into predefined[ssl _opti on()].
The function should be defined as: f un(ServerNanme :: string()) -> [ssl_option()] andcan
be specified asafun or asnamed f un nodul e: functi on/ 1 Theoptionsni _fun, andsni _hosts are
mutually exclusive.

{client_renegotiation, boolean()}
In protocols that support client-initiated renegotiation, the cost of resources of such an operation is higher for
the server than the client. This can act as a vector for denial of service attacks. The SSL application aready
takes measures to counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting
thisoptiontof al se. Thedefault valueist r ue. Note that disabling renegotiation can result in long-lived
connections becoming unusable due to limits on the number of messages the underlying cipher suite can
encipher.

{honor _ci pher_order, bool ean()}
If true, use the server's preference for cipher selection. If false (the default), use the client's preference.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

ssl

{honor _ecc_order, bool ean()}
If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.
{signature_algs, [{hash(), ecdsa | rsa | dsa}]}

Thealgorithms specified by thisoption will bethe onesaccepted by the server in asignature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For
more details see the corresponding client option.

{v2_hell o_compati bl e, bool ean()}
If true, the server accepts clients that send hello messages on SSL-2.0 format but offers supported SSL/TLS
versions. Defaults to false, that is the server will not interoperate with clients that offers SSL-2.0.

General

When an SSL socket is in active mode (the default), data from the socket is delivered to the owner of the socket in
the form of messages:

e {ssl, Socket, Data}

e {ssl _closed, Socket}

» {ssl_error, Socket, Reason}

A Ti meout argument specifiesatime-out in milliseconds. The default value for argument Ti meout isi nfinity.

Exports

cipher suites() ->
cipher suites(Type) -> ciphers()
Types:

Type = erlang | openssl | all
Returns a list of supported cipher suites. ci pher _sui tes() is equivaent to ci pher _suites(erl ang).
Type openssl is provided for backwards compatibility with the old SSL, which used OpenSSL.
ci pher_suites(all) retuns al avalable cipher suitess The cipher suites not present in

ci pher_suites(erlang) butincludedinci pher_suites(all) arenot used unless explicitly configured
by the user.

eccs() ->
eccs(protocol()) -> [named curve()]

Returns alist of supported ECCs. eccs() isequivaent to callingeccs(Pr ot ocol) with al supported protocols
and then deduplicating the output.

clear pem cache() -> ok

PEM files, used by ssl API-functions, are cached. The cacheisregularly checked to seeif any cache entries should be
invalidated, however this function provides away to unconditionally clear the whole cache.

connect(Socket, SslOptions) ->
connect(Socket, SslOptions, Timeout) -> {ok, SslSocket} | {error, Reason}
Types:

Socket = socket ()

Ssl Options = [ssl_option()]

Timeout = integer() | infinity

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Ssl Socket = ssl socket ()
Reason = term()

Upgradesagen_t cp, or equivalent, connected socket to an SSL socket, that is, performsthe client-side ssl handshake.

connect(Host, Port, Options) ->
connect(Host, Port, Options, Timeout) -> {ok, SslSocket} | {error, Reason}
Types.

Host host ()

Por t i nteger()

Options = [option()]

Ti meout integer() | infinity

Ssl Socket = ssl socket ()

Reason = term()

Opens an SSL connection to Host , Port .

close(SslSocket) -> ok | {error, Reason}
Types:

Ssl Socket = ssl socket ()

Reason = term)

Closes an SSL connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types.
Ssl Socket = ssl socket ()
How = tineout() | {NewController::pid(), timeout()}
Reason = term)
Closes or downgrades an SSL connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TLS close alert from the peer. The returned transport socket will have
thefollowing options set: [{ acti ve, fal se}, {packet, 0}, {node, binary}]

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types.

Ssl Socket = ssl socket ()

NewOaner = pid()

Reason = term)

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) -> {ok, Result} | {error, Reason}
Types.
Item = protocol | cipher_suite | sni_hostnane | ecc | atom)
Meaningful atoms, not specified above, are the ssl option names.
Result = [{ltem:atom(), Value::term()}]

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

ssl

Reason = term()
Returns all relevant information about the connection, ssl options that are undefined will be filtered out.

connection information(SslSocket, Items) -> {ok, Result} | {error, Reason}

Types:
Itens = [Item
Item = protocol | cipher_suite | sni_hostnanme | atom()

Meaningful atoms, not specified above, are the s option names.
Result = [{ltem:atom(), Value::term()}]
Reason = term()

Returns the requested information items about the connection, if they are defined.

Note:
If only undefined options are requested the resulting list can be empty.

format error(Reason) -> string()
Types:
Reason = term()
Presents the error returned by an SSL function as a printable string.

getopts(Socket, OptionNames) -> {ok, [socketoption()]} | {error, Reason}
Types.

Socket = ssl socket ()

Opti onNanes = [aton()]

Gets the values of the specified socket options.

getstat(Socket) -> {ok, OptionValues} | {error, inet:posix()}
getstat(Socket, OptionNames) -> {ok, OptionValues} | {error, inet:posix()}
Types.

Socket = ssl socket ()

Opti onNanes = [aton()]

OptionValues = [{inet:stat_option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = integer()

Options = options()

Li stenSocket = sslsocket ()
Creates an SSL listen socket.

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

negotiated protocol(Socket) -> {ok, Protocol} | {error,
protocol not negotiated}

Types:
Socket = ssl socket ()
Protocol = binary()

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(Socket) -> {ok, Cert} | {error, Reason}
Types:

Socket = ssl socket ()

Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
publ i c_key: pki x_decode_cert/ 2.

peername(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types.

Socket = ssl socket ()

Address = i paddress()

Port = integer()
Returns the address and port number of the peer.

prf(Socket, Secret, Label, Seed, WantedLength) -> {ok, binary()} | {error,
reason()}

Types:
Socket = ssl socket ()
Secret = binary() | master_secret

Label = binary()
Seed = [binary() | prf_random()]
Want edLengt h = non_neg_i nt eger ()

Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

Can only be used with TLS connections; { er r or, undef i ned} isreturned for SSLv3 connections.

recv(Socket, Length) ->
recv(Socket, Length, Timeout) -> {ok, Data} | {error, Reason}
Types:
Socket = ssl socket ()
Length = integer()
Ti meout = integer()
Data = [char()] | binary()
Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

ssl

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, al available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of data when the socket gets closed from the other side.

Optiona argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(Socket) -> ok | {error, Reason}
Types:
Socket = ssl socket ()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

send(Socket, Data) -> ok | {error, Reason}
Types:

Socket = ssl socket ()

Data = iodata()

WritesDat a to Socket .
A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(Socket, Options) -> ok | {error, Reason}
Types.

Socket = ssl socket ()

Options = [socketoption]()

Sets options according to Opt i ons for socket Socket .

shutdown (Socket, How) -> ok | {error, Reason}
Types:
Socket = ssl socket ()
How = read | wite | read wite
Reason = reason()
Immediately closes a socket in one or two directions.
How == wr it e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
isuseful.

ssl accept(Socket) ->
ssl accept(Socket, Timeout) -> ok | {error, Reason}

Types:
Socket = ssl socket ()
Ti meout = integer()

Reason = term()
Performs the SSL/TL S server-side handshake.
Socket isasocket asreturned by sd:transport_accept/[1,2]

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl accept(Socket, SslOptions) ->

ssl _accept(Socket, SslOptions, Timeout) -> {ok, Socket} | ok | {error,
Reason}

Types:
Socket = socket() | sslsocket()
Ssl Options = [ssl_option()]
Ti mreout = integer()
Reason = term()

If Socket isasocket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performsthe SSL/
TLS server-side handshake and returns the SSL socket.

Warning:

Thelisten socketistobeinmode{ act i ve, f al se} beforetelling the client that the server isready to upgrade
by calling this function, else the upgrade succeeds or does not succeed depending on timing.

If Socket isanssl socket () : providesextraSSL/TL S optionsto those specified in s3l:listen/2 and then performs
the SSL/TL S handshake.

sockname(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types.

Socket = ssl socket ()

Address = ipaddress()

Port = integer()
Returns the local address and port number of socket Socket .

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | tenporary
Starts the SSL application. Default typeist enpor ar y.

stop() -> ok
Stops the SSL application.

transport accept(ListenSocket) ->
transport accept(ListenSocket, Timeout) -> {ok, NewSocket} | {error, Reason}

Types:
Li stenSocket = NewSocket = sslsocket ()
Ti meout = integer()

Reason = reason()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

ssl

Accepts an incoming connection request on a listen socket. Li st enSocket must be a socket returned from
sdl:listen/2. The socket returned is to be passed to ssl:ssl_accept[2,3] to complete handshaking, that is, establishing
the SSL/TL S connection.

Warning:
The socket returned can only be used with ssl:ssl_accept[2,3]. No traffic can be sent or received before that call.

The accepted socket inherits the options set for Li st enSocket in sdl:listen/2.

The default value for Ti neout isi nfinity. If Ti meout is specified and no connection is accepted within the
giventime, {error, timeout} isreturned.

versions() -> [versions info()]

Types:
versions_info() = {app_vsn, string()} | {supported | avail able,
[protocol ()]

Returns version information relevant for the SSL application.

app_vsn
The application version of the SSL application.

supported
TLS/SSL versions supported by default. Overridden by aversion option on connect/[2,3,4], listen/2, and
sdl_accept/[1,2,3]. For the negotiated TLS/SSL version, see sd: connection_information/1 .

avai l abl e
All TLS/SSL versions supported by the SSL application. TLS 1.2 requires sufficient support from the Crypto
application.

SEE ALSO
inet(3) and gen_tcp(3)

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the sd_crl_cache api
behaviour the following functions are available.

Exports

delete(Entries) -> ok | {error, Reason}

Types:

Entries = http_uri:uri() |
publ i c_key: der _encoded()]}

Reason = term)

{file, string()} | {der, [

Delete CRLs from the sdl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}

Types:

CRLSrc = {file,

string()} | {der, [public_key:der_encoded() 1]}

URI = http_uri:uri()

Reason = term()

Insert CRLs into the ssl applications local cache.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When SSL/TLS performs certificate path validation according to RFC 5280 it should also perform CRL validation
checks. To enable the CRL checks the application needs access to CRLs. A database of CRLS can be set up in many
different ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the
erlang ssl application. It is also used by the application itself to provide a simple default implementation of a CRL
cache.

DATA TYPES

The following data types are used in the functions below:

cache ref() =

opaque()
di st_point() =

#DistributionPoint'{} see X509 certificates records

Exports

fresh crl(DistributionPoint, CRL) -> FreshCRL
Types:

Di stri butionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

fun fresh_crl/2 will beused asinput option updat e_cr| to public_key:pkix crls validate/3

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types.

Di stributionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = cache_ref ()

CRLs = [public_key: der_encoded()]

Lookup the CRLs belonging to the distribution point Di st ri buti onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

In an earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

select(Issuer, DbHandle) -> CRLs

Types:
| ssuer = public_key:issuer_nane()

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl_crl_cache_api

DbHandl e = cache_ref ()
Select the CRLs in the cache that areissued by | ssuer

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TL S session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

DATA TYPES

The following data types are used in the functionsfor ssl _sessi on_cache_api :
cache ref() =

opaque()
key() =

{partial key(), session_id()}

parti al key()

opaque()
session_id()

bi nary()
session() =

opaque()

Exports

delete(Cache, Key) -> _

Types:
Cache = cache_ref ()
Key = key()

Deletes a cache entry. Isonly called from the cache handling process.

foldl(Fun, AccO, Cache) -> Acc
Types.
CallsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cacheis empty.

init(Args) -> opaque()
Types:
Args = proplists:proplist()
Includes property {rol e, client | server}. Currently thisisthe only predefined property, there can aso be
user-defined properties. See aso application environment variable session_cb_init_args.

Performs possible initiaizations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

lookup(Cache, Key) -> Entry

Types:
Cache = cache_ref()
Key = key()

Entry = session() | undefined
Looks up a cache entry. Isto be callable from any process.

select session(Cache, PartialKey) -> [session()]
Types:

Cache = cache_ref()

Partial Key = parti al key()

Session = session()

Selects sessions that can be reused. Is to be callable from any process.

size(Cache) -> integer()
Types:
Cache = cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Isto be callable from any process.

terminate(Cache) ->
Types:
Cache = term() - as returned by init/0
Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) ->

Types:
Cache = cache_ref ()
Key = key()

Session = session()
Caches anew session or updates an already cached one. Is only called from the cache handling process.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS and its Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL API
	Setting up Connections
	Minimal Example
	Upgrade Example

	Using SSL for Erlang Distribution
	Building Boot Scripts Including the ssl Application
	Specifying Distribution Module for net_kernel
	Specifying SSL Options
	Setting up Environment to Always Use SSL
	Using SSL distribution over IPv6

	Reference Manual
	ssl
	ssl
	cipher_suites/0
	cipher_suites/1
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prf/5
	recv/2
	recv/3
	renegotiate/1
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	lookup/3
	lookup/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3

